Inference from Multinomial Data Based on a MLE-Dominance Criterion

نویسندگان

  • Alessio Benavoli
  • Cassio Polpo de Campos
چکیده

We consider the problem of inference from multinomial data with chances θ, subject to the a-priori information that the true parameter vector θ belongs to a known convex polytope Θ. The proposed estimator has the parametrized structure of the conditional-mean estimator with a prior Dirichlet distribution, whose parameters (s, t) are suitably designed via a dominance criterion so as to guarantee, for any θ ∈ Θ, an improvement of the Mean Squared Error over the Maximum Likelihood Estimator (MLE). The solution of this MLE-dominance problem allows us to give a different interpretation of: (1) the several Bayesian estimators proposed in the literature for the problem of inference from multinomial data; (2) the Imprecise Dirichlet Model (IDM) developed by Walley [13].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference with Multinomial Data: Why to Weaken the Prior Strength

This paper considers inference from multinomial data and addresses the problem of choosing the strength of the Dirichlet prior under a meansquared error criterion. We compare the Maximum Likelihood Estimator (MLE) and the most commonly used Bayesian estimators obtained by assuming a prior Dirichlet distribution with “noninformative” prior parameters, that is, the parameters of the Dirichlet are...

متن کامل

Robust Drift Parameter Estimation In Diffusion Processes

We consider some inference problems concerning the drift parameters vector of diffusion process. Namely, we consider the case where the parameters vector is suspected to satisfy certain restriction. Under such a design and imprecise prior information, we propose Stein-rule (or shrinkage) estimators which improves over the performance of the classical maximum likelihood estimator (MLE). By using...

متن کامل

Asymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution

Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...

متن کامل

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

Eigenstructure of Maximum Likelihood from Counting Data

The MLE (Maximum Likelihood Estimate) for a multinomial model is proportional to the data. We call such estimate an eigenestimate and the relationship of it to the data as the eigenstructure. When the multinomial model is generalized to deal with data arise from incomplete or censored categorical counts, we would naturally look for this eigenstructure between MLE and data. The paper finds the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009